Advertisements
Advertisements
प्रश्न
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( - 8 x^2 y^6 \right) \times \left( - 20xy \right)\]
\[ = \left\{ \left( - 8 \right) \times \left( - 20 \right) \right\} \times \left( x^2 \times x \right) \times \left( y^6 \times y \right)\]
\[ = \left\{ \left( - 8 \right) \times \left( - 20 \right) \right\} \times \left( x^{2 + 1} \right) \times \left( y^{6 + 1} \right)\]
\[ = - 160 x^3 y^7 \]
\[\therefore\] \[\left( - 8 x^2 y^6 \right) \times \left( - 20xy \right) = - 160 x^3 y^7\]
Substituting x = 2.5 and y = 1 in LHS, we get:
\[\text { LHS } = \left( - 8 x^2 y^6 \right) \times \left( - 20xy \right)\]
\[ = \left\{ - 8 \left( 2 . 5 \right)^2 \left( 1 \right)^6 \right\} \times \left\{ - 20\left( 2 . 5 \right)\left( 1 \right) \right\}\]
\[ = \left\{ - 8\left( 6 . 25 \right)\left( 1 \right) \right\} \times \left\{ - 20\left( 2 . 5 \right)\left( 1 \right) \right\}\]
\[ = \left( - 50 \right) \times \left( - 50 \right)\]
\[ = 2500\]
Substituting x = 2.5 and y = 1 in RHS, we get:
\[\text { RHS } = - 160 x^3 y^7 \]
\[ = - 160 \left( 2 . 5 \right)^3 \left( 1 \right)^7 \]
\[ = - 160\left( 15 . 625 \right) \times 1\]
\[ = - 2500\]
Because LHS is equal to RHS, the result is correct.
Thus, the answer is \[- 160 x^3 y^7\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
−3a2 × 4b4
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5.
Find the following product:
0.1y(0.1x5 + 0.1y)
Simplify: a2b(a − b2) + ab2(4ab − 2a2) − a3b(1 − 2b)
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Simplify:
(5x + 3)(x − 1)(3x − 2)
Simplify : (2.5p − 1.5q)2 − (1.5p − 2.5q)2
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0