Advertisements
Advertisements
प्रश्न
Simplify: a2b(a − b2) + ab2(4ab − 2a2) − a3b(1 − 2b)
उत्तर
To simplify, we will use distributive law as follows:
\[a^2 b\left( a - b^2 \right) + a b^2 \left( 4ab - 2 a^2 \right) - a^3 b\left( 1 - 2b \right)\]
\[ = a^3 b - a^2 b^3 + 4 a^2 b^3 - 2 a^3 b^2 - a^3 b + 2 a^3 b^2 \]
\[ = a^3 b - a^3 b - a^2 b^3 + 4 a^2 b^3 - 2 a^3 b^2 + 2 a^3 b^2 \]
\[ = 3 a^2 b^3\]
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
Find the value of (5x6) × (−1.5x2y3) × (−12xy2) when x = 1, y = 0.5.
Find the following product:
1.5x(10x2y − 100xy2)
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Multiply:
(x2 + y2) by (3a + 2b)
Multiply:
(0.8a − 0.5b) by (1.5a − 3b)
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Solve the following equation.
5(x + 1) = 74