Advertisements
Advertisements
प्रश्न
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
उत्तर
To multiply, we will use distributive law as follows:
\[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
\[ = \left[ \frac{1}{3}x\left( \frac{1}{3}x + \frac{y^2}{5} \right) \right] - \left[ \frac{y^2}{5}\left( \frac{1}{3}x + \frac{y^2}{5} \right) \right]\]
\[ = \left[ \frac{1}{9} x^2 + \frac{x y^2}{15} \right] - \left[ \frac{x y^2}{15} + \frac{y^4}{25} \right]\]
\[ = \frac{1}{9} x^2 + \frac{x y^2}{15} - \frac{x y^2}{15} - \frac{y^4}{25}\]
\[ = \frac{1}{9} x^2 - \frac{y^4}{25}\]
\[\therefore\] \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right) = \frac{1}{9} x^2 - \frac{y^4}{25}\]
Now, we will put x = \[-\] 1 and y = \[-\] 2 on both the sides to verify the result.
\[\text { LHS } =\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
\[ = \left[ \frac{1}{3}\left( - 1 \right) - \frac{\left( - 2 \right)^2}{5} \right]\left[ \frac{1}{3}\left( - 1 \right) + \frac{\left( - 2 \right)^2}{5} \right]\]
\[ = \left( - \frac{1}{3} - \frac{4}{5} \right)\left( - \frac{1}{3} + \frac{4}{5} \right)\]
\[ = \left( \frac{- 17}{15} \right)\left( \frac{7}{15} \right)\]
\[ = \frac{- 119}{225}\]
\[\text { RHS } = \frac{1}{9} x^2 - \frac{y^4}{25}\]
\[ = \frac{1}{9} \left( - 1 \right)^2 - \frac{\left( - 2 \right)^4}{25}\]
\[ = \frac{1}{9} \times 1 - \frac{16}{25}\]
\[ = \frac{1}{9} - \frac{16}{25}\]
\[ = - \frac{119}{225}\]
Because LHS is equal to RHS, the result is verified.
Thus, the answer is \[\frac{1}{9} x^2 - \frac{y^4}{25}\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Find the value of (5x6) × (−1.5x2y3) × (−12xy2) when x = 1, y = 0.5.
Find the following product:
−5a(7a − 2b)
Find the following product:
1.5x(10x2y − 100xy2)
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Solve the following equation.
2(x − 4) = 4x + 2
Solve:
(3x + 2y)(7x − 8y)