Advertisements
Advertisements
प्रश्न
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
उत्तर
To find the product, we will use distributive law as follows:
\[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
\[ = \frac{7}{5} x^2 y \times \frac{3}{5}x y^2 + \frac{7}{5} x^2 y \times \frac{2}{5}x\]
\[ = \frac{21}{25} x^{2 + 1} y^{1 + 2} + \frac{14}{25} x^{2 + 1} y\]
\[ = \frac{21}{25} x^3 y^3 + \frac{14}{25} x^3 y\]
Thus, the answer is \[\frac{21}{25} x^3 y^3 + \frac{14}{25} x^3 y\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Find the following product:
1.5x(10x2y − 100xy2)
Multiply:
(3x2 + y2) by (2x2 + 3y2)
Multiply:
(0.8a − 0.5b) by (1.5a − 3b)
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
Solve the following equation.
5(x + 1) = 74