Advertisements
Advertisements
प्रश्न
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
उत्तर
To find the product, we will use distributive law as follows:
\[\frac{4}{3}a\left( a^2 + b^2 - 3 c^2 \right)\]
\[ = \frac{4}{3}a \times a^2 + \frac{4}{3}a \times b^2 - \frac{4}{3}a \times 3 c^2 \]
\[ = \frac{4}{3} a^{1 + 2} + \frac{4}{3}a b^2 - 4a c^2 \]
\[ = \frac{4}{3} a^3 + \frac{4}{3}a b^2 - 4a c^2\]
Thus, the answer is \[\frac{4}{3} a^3 + \frac{4}{3}a b^2 - 4a c^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
−3a2 × 4b4
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Find the following product:
0.1y(0.1x5 + 0.1y)
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
Multiply:
23xy2 × 4yz2