Advertisements
Advertisements
प्रश्न
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( - 8 x^2 y^6 \right) \times \left( - 20xy \right)\]
\[ = \left\{ \left( - 8 \right) \times \left( - 20 \right) \right\} \times \left( x^2 \times x \right) \times \left( y^6 \times y \right)\]
\[ = \left\{ \left( - 8 \right) \times \left( - 20 \right) \right\} \times \left( x^{2 + 1} \right) \times \left( y^{6 + 1} \right)\]
\[ = 160 x^3 y^7\]
\[\therefore\] \[\left( - 8 x^2 y^6 \right) \times \left( - 20xy \right) = 160 x^3 y^7\]
Substituting x = 2.5 and y = 1 in the result, we get:
\[160 x^3 y^7 \]
\[ = 160 \left( 2 . 5 \right)^3 \left( 1 \right)^7 \]
\[ = 160 \times 15 . 625\]
\[ = 2500\]
Thus, the answer is \[2500\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
−3a2 × 4b4
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Find the following product:
−11y2(3y + 7)
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Simplify:
x2(x + 2y) (x − 3y)
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
Multiply:
16xy × 18xy