Advertisements
Advertisements
प्रश्न
Express each of the following product as a monomials and verify the result for x = 1, y = 2:
(−xy3) × (yx3) × (xy)
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( - x y^3 \right) \times \left( y x^3 \right) \times \left( xy \right)\]
\[ = \left( - 1 \right) \times \left( x \times x^3 \times x \right) \times \left( y^3 \times y \times y \right)\]
\[ = \left( - 1 \right) \times \left( x^{1 + 3 + 1} \right) \times \left( y^{3 + 1 + 1} \right)\]
\[ = - x^5 y^5\]
To verify the result, we substitute x = 1 and y = 2 in LHS; we get:
\[\text { LHS }= \left( - x y^3 \right) \times \left( y x^3 \right) \times \left( xy \right)\]
\[ = \left\{ \left( - 1 \right) \times 1 \times 2^3 \right\} \times \left( 2 \times 1^3 \right) \times \left( 1 \times 2 \right)\]
\[ = \left\{ \left( - 1 \right) \times 1 \times 8 \right\} \times \left( 2 \times 1 \right) \times 2\]
\[ = \left( - 8 \right) \times 2 \times 2\]
\[ = - 32\]
Substituting x = 1 and y = 2 in RHS, we get:
\[\text { RHS } = - x^5 y^5 \]
\[ = \left( - 1 \right) \left( 1 \right)^5 \left( 2 \right)^5 \]
\[ = \left( - 1 \right) \times 1 \times 32\]
\[ = - 32\]
Because LHS is equal to RHS, the result is correct.
Thus, the answer is \[- x^5 y^5\].
APPEARS IN
संबंधित प्रश्न
Find the product of the following pair of monomial.
− 4p, 7p
Find the product of the following pair of monomial.
− 4p, 7pq
Obtain the product of a, − a2, a3
Express each of the following product as a monomials and verify the result for x = 1, y = 2: \[\left( - \frac{4}{7} a^2 b \right) \times \left( - \frac{2}{3} b^2 c \right) \times \left( - \frac{7}{6} c^2 a \right)\]
Multiply: 2a2 − 5a − 4 and −3a
Multiply: x2+ x + 1 by 1 − x
Multiply: 2m2 − 3m − 1 and 4m2 − m − 1
Length | breadth | height | |
(i) | 2ax | 3by | 5cz |
(ii) | m2n | n2p | p2m |
(iii) | 2q | 4q2 | 8q3 |
Solve: ( -3x2 ) × ( -4xy)
Multiply (4x2 + 9) and (3x – 2)