Advertisements
Advertisements
प्रश्न
Find the product of the following pair of monomial.
− 4p, 7p
उत्तर
The product will be as follows:
− 4p × 7p
= − 4 × p × 7 × p
= (− 4 × 7) × (p × p)
= − 28p2
APPEARS IN
संबंधित प्रश्न
Complete the table of products.
First monomial→ |
2x |
–5y |
3x2 |
–4xy |
7x2y |
–9x2y2 |
Second monomial ↓ |
||||||
2x | 4x2 | ... | ... | ... | ... | ... |
–5y | ... | ... | –15x2y | ... | ... | ... |
3x2 | ... | ... | ... | ... | ... | ... |
– 4xy | ... | ... | ... | ... | ... | ... |
7x2y | ... | ... | ... | ... | ... | ... |
–9x2y2 | ... | ... | ... | ... | ... | ... |
Obtain the product of a, 2b, 3c, 6abc.
Express each of the following product as a monomials and verify the result for x = 1, y = 2: \[\left( \frac{1}{8} x^2 y^4 \right) \times \left( \frac{1}{4} x^4 y^2 \right) \times \left( xy \right) \times 5\]
Express each of the following product as a monomials and verify the result for x = 1, y = 2:
\[\left( \frac{4}{9}ab c^3 \right) \times \left( - \frac{27}{5} a^3 b^2 \right) \times \left( - 8 b^3 c \right)\]
Multiply: −8x and 4 − 2x − x2
Multiply: 2a2 − 5a − 4 and −3a
Solve: ( -3x2 ) × ( -4xy)
Solve: (-12x) × 3y2
abc + bca + cab is a monomial.
Multiply the following:
–3x2y, (5y – xy)