Advertisements
Advertisements
प्रश्न
Express each of the following product as a monomials and verify the result for x = 1, y = 2: \[\left( \frac{1}{8} x^2 y^4 \right) \times \left( \frac{1}{4} x^4 y^2 \right) \times \left( xy \right) \times 5\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( \frac{1}{8} x^2 y^4 \right) \times \left( \frac{1}{4} x^4 y^2 \right) \times \left( xy \right) \times 5\]
\[ = \left( \frac{1}{8} \times \frac{1}{4} \times 5 \right) \times \left( x^2 \times x^4 \times x \right) \times \left( y^4 \times y^2 \times y \right)\]
\[ = \left( \frac{1}{8} \times \frac{1}{4} \times 5 \right) \times \left( x^{2 + 4 + 1} \right) \times \left( y^{4 + 2 + 1} \right)\]
\[ = \frac{5}{32} x^7 y^7\]
To verify the result, we substitute x = 1 and y = 2 in LHS; we get:
\[\text { LHS } = \left( \frac{1}{8} x^2 y^4 \right) \times \left( \frac{1}{4} x^4 y^2 \right) \times \left( xy \right) \times 5\]
\[ = \left\{ \frac{1}{8} \times \left( 1 \right)^2 \times \left( 2 \right)^4 \right\} \times \left\{ \frac{1}{4} \times \left( 1 \right)^4 \times \left( 2 \right)^2 \right\} \times \left( 1 \times 2 \right) \times 5\]
\[ = \left( \frac{1}{8} \times 1 \times 16 \right) \times \left( \frac{1}{4} \times 1 \times 4 \right) \times \left( 1 \times 2 \right) \times 5\]
\[ = 2 \times 1 \times 2 \times 5\]
\[ = 20\]
Substituting x = 1 and y = 2 in RHS, we get:
\[\text { RHS } = \frac{5}{32} x^7 y^7 \]
\[ = \frac{5}{32} \left( 1 \right)^7 \left( 2 \right)^7 \]
\[ = \frac{5}{32} \times 1 \times {128}^4 \]
\[ = 20\]
Because LHS is equal to RHS, the result is correct.
Thus, the answer is \[\frac{5}{32} x^7 y^7\].
APPEARS IN
संबंधित प्रश्न
Obtain the volume of a rectangular box with the following length, breadth, and height, respectively.
xy, 2x2y, 2xy2
Obtain the product of xy, yz, zx.
Obtain the product of a, − a2, a3
Express each of the following product as a monomials and verify the result for x = 1, y = 2: \[\left( - \frac{4}{7} a^2 b \right) \times \left( - \frac{2}{3} b^2 c \right) \times \left( - \frac{7}{6} c^2 a \right)\]
Express each of the following product as a monomials and verify the result for x = 1, y = 2:
\[\left( \frac{4}{9}ab c^3 \right) \times \left( - \frac{27}{5} a^3 b^2 \right) \times \left( - 8 b^3 c \right)\]
Multiply: abx, −3a2x and 7b2x3
Multiply: `2"a"^3-3"a"^2"b"` and `-1/2"ab"^2`
Multiply the following:
abc, (bc + ca)
Multiply the following:
x2y2z2, (xy – yz + zx)
Multiply the following:
(p + 6), (q – 7)