Advertisements
Advertisements
प्रश्न
Express each of the following product as a monomials and verify the result for x = 1, y = 2: \[\left( - \frac{4}{7} a^2 b \right) \times \left( - \frac{2}{3} b^2 c \right) \times \left( - \frac{7}{6} c^2 a \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( - \frac{4}{7} a^2 b \right) \times \left( - \frac{2}{3} b^2 c \right) \times \left( - \frac{7}{6} c^2 a \right)\]
\[ = \left\{ \left( - \frac{4}{7} \right) \times \left( - \frac{2}{3} \right) \times \left( - \frac{7}{6} \right) \right\} \times \left( a^2 \times a \right) \times \left( b \times b^2 \right) \times \left( c \times c^2 \right)\]
\[ = \left\{ \left( - \frac{4}{7} \right) \times \left( - \frac{2}{3} \right) \times \left( - \frac{7}{6} \right) \right\} \times \left( a^{2 + 1} \right) \times \left( b^{1 + 2} \right) \times \left( c^{1 + 2} \right)\]
\[ = - \frac{4}{9} a^3 b^3 c^3\]
\[\because\] The expression doesn't consist of the variables x and y.
\[\therefore\] The result cannot be verified for x = 1 and y = 2.
Thus, the answer is \[- \frac{4}{9} a^3 b^3 c^3\].
APPEARS IN
संबंधित प्रश्न
Express each of the following product as a monomials and verify the result for x = 1, y = 2:
(−xy3) × (yx3) × (xy)
Express each of the following product as a monomials and verify the result for x = 1, y = 2: \[\left( \frac{1}{8} x^2 y^4 \right) \times \left( \frac{1}{4} x^4 y^2 \right) \times \left( xy \right) \times 5\]
Multiply: 5a − 1 by 7a − 3
Multiply: 2m2 − 3m − 1 and 4m2 − m − 1
Multiply: `2"x"+1/2"y"` and `2"x"-1/2"y"`
Three consecutive integers, when taken in increasing order and multiplied by 2, 3 and 4 respectively, total up to 74. Find the three numbers.
Product of the following monomials 4p, – 7q3, –7pq is ______.
Volume of a rectangular box (cuboid) with length = 2ab, breadth = 3ac and height = 2ac is ______.
Multiply the following:
15xy2, 17yz2
Multiply the following:
7pqr, (p – q + r)