Advertisements
Advertisements
Question
Express each of the following product as a monomials and verify the result for x = 1, y = 2: \[\left( - \frac{4}{7} a^2 b \right) \times \left( - \frac{2}{3} b^2 c \right) \times \left( - \frac{7}{6} c^2 a \right)\]
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( - \frac{4}{7} a^2 b \right) \times \left( - \frac{2}{3} b^2 c \right) \times \left( - \frac{7}{6} c^2 a \right)\]
\[ = \left\{ \left( - \frac{4}{7} \right) \times \left( - \frac{2}{3} \right) \times \left( - \frac{7}{6} \right) \right\} \times \left( a^2 \times a \right) \times \left( b \times b^2 \right) \times \left( c \times c^2 \right)\]
\[ = \left\{ \left( - \frac{4}{7} \right) \times \left( - \frac{2}{3} \right) \times \left( - \frac{7}{6} \right) \right\} \times \left( a^{2 + 1} \right) \times \left( b^{1 + 2} \right) \times \left( c^{1 + 2} \right)\]
\[ = - \frac{4}{9} a^3 b^3 c^3\]
\[\because\] The expression doesn't consist of the variables x and y.
\[\therefore\] The result cannot be verified for x = 1 and y = 2.
Thus, the answer is \[- \frac{4}{9} a^3 b^3 c^3\].
APPEARS IN
RELATED QUESTIONS
Obtain the product of a, − a2, a3
Obtain the product of m, − mn, mnp.
Multiply: x + 4 by x − 5
Multiply: −3bx, −5xy and −7b3y2
Solve: (-12x) × 3y2
Area of a rectangle with length 4ab and breadth 6b2 is ______.
Multiply the following:
15xy2, 17yz2
Multiply the following:
–3x2y, (5y – xy)
Multiply the following:
x2y2z2, (xy – yz + zx)
Multiply the following:
6mn, 0mn