Advertisements
Advertisements
Question
Express each of the following product as a monomials and verify the result for x = 1, y = 2:
\[\left( \frac{4}{9}ab c^3 \right) \times \left( - \frac{27}{5} a^3 b^2 \right) \times \left( - 8 b^3 c \right)\]
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( \frac{4}{9}ab c^3 \right) \times \left( - \frac{27}{5} a^3 b^2 \right) \times \left( - 8 b^3 c \right)\]
\[ = \left\{ \left( \frac{4}{9} \right) \times \left( - \frac{27}{5} \right) \times \left( - 8 \right) \right\} \times \left( a \times a^3 \right) \times \left( b \times b^2 \times b^3 \right) \times \left( c^3 \times c \right)\]
\[ = \left\{ \left( \frac{4}{9} \right) \times \left( - \frac{27}{5} \right) \times \left( - 8 \right) \right\} \times \left( a^{1 + 3} \right) \times \left( b^{1 + 2 + 3} \right) \times \left( c^{3 + 1} \right)\]
\[ = \frac{96}{5} a^4 b^6 c^4\]
Thus, the answer is \[\frac{96}{5} a^4 b^6 c^4\].
\[\because\] The expression doesn't consist of the variables x and y.
APPEARS IN
RELATED QUESTIONS
Find the product of the following pair of monomial.
− 4p, 7pq
Find the product of the following pair of monomial.
4p3, − 3p
Find the product of the following pair of monomial.
4p, 0
Express each of the following product as a monomials and verify the result for x = 1, y = 2: \[\left( - \frac{4}{7} a^2 b \right) \times \left( - \frac{2}{3} b^2 c \right) \times \left( - \frac{7}{6} c^2 a \right)\]
Solve: ( -3x2 ) × ( -4xy)
A total of 90 currency notes, consisting only of ₹ 5 and ₹ 10 denominations, amount to ₹ 500. Find the number of notes in each denomination.
Product of the following monomials 4p, – 7q3, –7pq is ______.
Multiply the following:
3x2y2z2, 17xyz
Multiply the following:
–5a2bc, 11ab, 13abc2
Multiply the following:
(p + 6), (q – 7)