Advertisements
Advertisements
प्रश्न
Express each of the following product as a monomials and verify the result for x = 1, y = 2:
\[\left( \frac{4}{9}ab c^3 \right) \times \left( - \frac{27}{5} a^3 b^2 \right) \times \left( - 8 b^3 c \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( \frac{4}{9}ab c^3 \right) \times \left( - \frac{27}{5} a^3 b^2 \right) \times \left( - 8 b^3 c \right)\]
\[ = \left\{ \left( \frac{4}{9} \right) \times \left( - \frac{27}{5} \right) \times \left( - 8 \right) \right\} \times \left( a \times a^3 \right) \times \left( b \times b^2 \times b^3 \right) \times \left( c^3 \times c \right)\]
\[ = \left\{ \left( \frac{4}{9} \right) \times \left( - \frac{27}{5} \right) \times \left( - 8 \right) \right\} \times \left( a^{1 + 3} \right) \times \left( b^{1 + 2 + 3} \right) \times \left( c^{3 + 1} \right)\]
\[ = \frac{96}{5} a^4 b^6 c^4\]
Thus, the answer is \[\frac{96}{5} a^4 b^6 c^4\].
\[\because\] The expression doesn't consist of the variables x and y.
APPEARS IN
संबंधित प्रश्न
Find the product of the following pair of monomial.
4, 7p
Obtain the product of a, 2b, 3c, 6abc.
Express each of the following product as a monomials and verify the result for x = 1, y = 2:
(−xy3) × (yx3) × (xy)
Express each of the following product as a monomials and verify the result for x = 1, y = 2:
Express each of the following product as a monomials and verify the result for x = 1, y = 2: \[\left( - \frac{4}{7} a^2 b \right) \times \left( - \frac{2}{3} b^2 c \right) \times \left( - \frac{7}{6} c^2 a \right)\]
Multiply: 4a and 6a + 7
Multiply: x + 4 by x − 5
Multiply: `-2/3"a"^7"b"^2` and `-9/4"a""b"^5`
Solve: (-12x) × 3y2
At present, Thenmozhi’s age is 5 years more than that of Murali’s age. Five years ago, the ratio of Thenmozhi’s age to Murali’s age was 3 : 2. Find their present ages.