Advertisements
Advertisements
प्रश्न
Express each of the following product as a monomials and verify the result for x = 1, y = 2:
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( \frac{2}{5} a^2 b \right) \times \left( - 15 b^2 ac \right) \times \left( - \frac{1}{2} c^2 \right)\]
\[ = \left\{ \frac{2}{5} \times \left( - 15 \right) \times \left( - \frac{1}{2} \right) \right\} \times \left( a^2 \times a \right) \times \left( b \times b^2 \right) \times \left( c \times c^2 \right)\]
\[ = \left\{ \frac{2}{5} \times \left( - 15 \right) \times \left( - \frac{1}{2} \right) \right\} \times \left( a^{2 + 1} \right) \times \left( b^{1 + 2} \right) \times \left( c^{1 + 2} \right)\]
\[ = 3 a^3 b^3 c^3\]
\[\because\] The expression doesn't consist of the variables x and y.
\[\therefore\] The result cannot be verified for x = 1 and y = 2
APPEARS IN
संबंधित प्रश्न
Find the product of the following pair of monomial.
4, 7p
Obtain the volume of a rectangular box with the following length, breadth, and height, respectively.
2p, 4q, 8r
Multiply : 8ab2 by − 4a3b4
Multiply: 4a and 6a + 7
Multiply: −8x and 4 − 2x − x2
Length | breadth | height | |
(i) | 2ax | 3by | 5cz |
(ii) | m2n | n2p | p2m |
(iii) | 2q | 4q2 | 8q3 |
Solve: (-12x) × 3y2
Multiply the following:
–7pq2r3, –13p3q2r
Multiply the following:
x2y2z2, (xy – yz + zx)
Multiply the following:
6mn, 0mn