Advertisements
Advertisements
Question
Express each of the following product as a monomials and verify the result for x = 1, y = 2:
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( \frac{2}{5} a^2 b \right) \times \left( - 15 b^2 ac \right) \times \left( - \frac{1}{2} c^2 \right)\]
\[ = \left\{ \frac{2}{5} \times \left( - 15 \right) \times \left( - \frac{1}{2} \right) \right\} \times \left( a^2 \times a \right) \times \left( b \times b^2 \right) \times \left( c \times c^2 \right)\]
\[ = \left\{ \frac{2}{5} \times \left( - 15 \right) \times \left( - \frac{1}{2} \right) \right\} \times \left( a^{2 + 1} \right) \times \left( b^{1 + 2} \right) \times \left( c^{1 + 2} \right)\]
\[ = 3 a^3 b^3 c^3\]
\[\because\] The expression doesn't consist of the variables x and y.
\[\therefore\] The result cannot be verified for x = 1 and y = 2
APPEARS IN
RELATED QUESTIONS
Express each of the following product as a monomials and verify the result for x = 1, y = 2:
\[\left( \frac{4}{9}ab c^3 \right) \times \left( - \frac{27}{5} a^3 b^2 \right) \times \left( - 8 b^3 c \right)\]
Multiply : 8ab2 by − 4a3b4
Multiply: −5cd2 by − 5cd2
Multiply: 5a − 1 by 7a − 3
Multiply: 2m2 − 3m − 1 and 4m2 − m − 1
Multiply: `2"x"+1/2"y"` and `2"x"-1/2"y"`
A total of 90 currency notes, consisting only of ₹ 5 and ₹ 10 denominations, amount to ₹ 500. Find the number of notes in each denomination.
Area of a rectangle with length 4ab and breadth 6b2 is ______.
Multiply the following:
3x2y2z2, 17xyz
Multiply the following:
7pqr, (p – q + r)