English

Evaluate Each of the Following When X = 2, Y = −1. - Mathematics

Advertisements
Advertisements

Question

Evaluate each of the following when x = 2, y = −1.

\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]

Answer in Brief

Solution

To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e.,​\[a^m \times a^n = a^{m + n}\].

We have:

\[\left( 2xy \right) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]

\[ = \left( 2 \times \frac{1}{4} \right) \times \left( x \times x^2 \times x^2 \right) \times \left( y \times y \times y^2 \right)\]

\[ = \left( 2 \times \frac{1}{4} \right) \times \left( x^{1 + 2 + 2} \right) \times \left( y^{1 + 1 + 2} \right)\]

\[ = \frac{1}{2} x^5 y^4\]

\[\therefore\] \[\left( 2xy \right) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right) = \frac{1}{2} x^5 y^4\]

Substituting x = 2 and y = \[-\] 1 in the result, we get:

\[\frac{1}{2} x^5 y^4 \]

\[ = \frac{1}{2} \left( 2 \right)^5 \left( - 1 \right)^4 \]

\[ = \frac{1}{2} \times 32 \times 1\]

\[ = 16\]

Thus, the answer is 16.

shaalaa.com
Multiplication of Algebraic Expressions
  Is there an error in this question or solution?
Chapter 6: Algebraic Expressions and Identities - Exercise 6.3 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 8
Chapter 6 Algebraic Expressions and Identities
Exercise 6.3 | Q 32 | Page 14
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×