Advertisements
Advertisements
Question
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e.,\[a^m \times a^n = a^{m + n}\].
We have:
\[\left( 2xy \right) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
\[ = \left( 2 \times \frac{1}{4} \right) \times \left( x \times x^2 \times x^2 \right) \times \left( y \times y \times y^2 \right)\]
\[ = \left( 2 \times \frac{1}{4} \right) \times \left( x^{1 + 2 + 2} \right) \times \left( y^{1 + 1 + 2} \right)\]
\[ = \frac{1}{2} x^5 y^4\]
\[\therefore\] \[\left( 2xy \right) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right) = \frac{1}{2} x^5 y^4\]
Substituting x = 2 and y = \[-\] 1 in the result, we get:
\[\frac{1}{2} x^5 y^4 \]
\[ = \frac{1}{2} \left( 2 \right)^5 \left( - 1 \right)^4 \]
\[ = \frac{1}{2} \times 32 \times 1\]
\[ = 16\]
Thus, the answer is 16.
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Find the following product:
1.5x(10x2y − 100xy2)
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Simplify: x2(x2 + 1) − x3(x + 1) − x(x3 − x)
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
Multiply:
16xy × 18xy
Multiply:
(4x + 5y) × (9x + 7y)