Advertisements
Advertisements
Question
Simplify: x2(x2 + 1) − x3(x + 1) − x(x3 − x)
Solution
To simplify, we will use distributive law as follows:
\[x^2 \left( x^2 + 1 \right) - x^3 \left( x + 1 \right) - x\left( x^3 - x \right)\]
\[ = x^4 + x^2 - x^4 - x^3 - x^4 + x^2 \]
\[ = x^4 - x^4 - x^4 - x^3 + x^2 + x^2 \]
\[ = - x^4 - x^3 + 2 x^2\]
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Find the following product:
4.1xy(1.1x − y)
Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)
Simplify: a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)
Multiply:
(5x + 3) by (7x + 2)
Multiply:
(x6 − y6) by (x2 + y2)
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)