Advertisements
Advertisements
Question
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Solution
To simplify, we will proceed as follows:
\[\left( x^3 - 2 x^2 + 5x - 7 \right)\left( 2x - 3 \right)\]
\[ = 2x\left( x^3 - 2 x^2 + 5x - 7 \right) - 3\left( x^3 - 2 x^2 + 5x - 7 \right)\]
\[ = 2 x^4 - 4 x^3 + 10 x^2 - 14x - 3 x^3 + 6 x^2 - 15x + 21\]
\[= 2 x^4 - 4 x^3 - 3 x^3 + 10 x^2 + 6 x^2 - 14x - 15x + 21\] (Rearranging)
\[= 2 x^4 - 7 x^3 + 16 x^2 - 29x + 21\] (Combining like terms)
Thus, the answer is \[2 x^4 - 7 x^3 + 16 x^2 - 29x + 21\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(−5xy) × (−3x2yz)
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
Find the following product:
−11y2(3y + 7)
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
Multiply:
(x6 − y6) by (x2 + y2)
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
Solve the following equation.
2(x − 4) = 4x + 2