Advertisements
Advertisements
Question
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
Solution
To simplify, we will proceed as follows:
\[\left( 5x - 3 \right)\left( x + 2 \right) - \left( 2x + 5 \right)\left( 4x - 3 \right)\]
\[ = \left[ \left( 5x - 3 \right)\left( x + 2 \right) \right] - \left[ \left( 2x + 5 \right)\left( 4x - 3 \right) \right]\]
\[= \left[ 5x\left( x + 2 \right) - 3\left( x + 2 \right) \right] - \left[ 2x\left( 4x - 3 \right) + 5\left( 4x - 3 \right) \right]\] (Distributive law)
\[= 5 x^2 + 10x - 3x - 6 - 8 x^2 + 6x - 20x + 15\]
\[= 5 x^2 - 8 x^2 + 10x - 3x + 6x - 20x - 6 + 15\] (Rearranging)
\[= 5 x^2 - 8 x^2 + 10x - 3x + 6x - 20x - 6 + 15\]
\[ = - 3 x^2 - 7x + 9\] (Combining like terms)
Hence, the answer is \[- 3 x^2 - 7x + 9\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Find the following product:
−5a(7a − 2b)
Find the following product:
−11y2(3y + 7)
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)
Simplify:
(x2 − 2y2) (x + 4y) x2y2
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
Solve the following equation.
2(x − 4) = 4x + 2