Advertisements
Advertisements
प्रश्न
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
उत्तर
To simplify, we will proceed as follows:
\[\left( x^3 - 2 x^2 + 5x - 7 \right)\left( 2x - 3 \right)\]
\[ = 2x\left( x^3 - 2 x^2 + 5x - 7 \right) - 3\left( x^3 - 2 x^2 + 5x - 7 \right)\]
\[ = 2 x^4 - 4 x^3 + 10 x^2 - 14x - 3 x^3 + 6 x^2 - 15x + 21\]
\[= 2 x^4 - 4 x^3 - 3 x^3 + 10 x^2 + 6 x^2 - 14x - 15x + 21\] (Rearranging)
\[= 2 x^4 - 7 x^3 + 16 x^2 - 29x + 21\] (Combining like terms)
Thus, the answer is \[2 x^4 - 7 x^3 + 16 x^2 - 29x + 21\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5xy) × (−3x2yz)
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
Find the following product: \[\frac{6x}{5}( x^3 + y^3 )\]
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Multiply:
(2x + 8) by (x − 3)
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify:
(5 − x)(6 − 5x)( 2 − x)
Simplify : (2.5p − 1.5q)2 − (1.5p − 2.5q)2