Advertisements
Advertisements
प्रश्न
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
उत्तर
To multiply, we will use distributive law as follows:
\[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
\[ = \left[ \frac{1}{3}x\left( \frac{1}{3}x + \frac{y^2}{5} \right) \right] - \left[ \frac{y^2}{5}\left( \frac{1}{3}x + \frac{y^2}{5} \right) \right]\]
\[ = \left[ \frac{1}{9} x^2 + \frac{x y^2}{15} \right] - \left[ \frac{x y^2}{15} + \frac{y^4}{25} \right]\]
\[ = \frac{1}{9} x^2 + \frac{x y^2}{15} - \frac{x y^2}{15} - \frac{y^4}{25}\]
\[ = \frac{1}{9} x^2 - \frac{y^4}{25}\]
\[\therefore\] \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right) = \frac{1}{9} x^2 - \frac{y^4}{25}\]
Now, we will put x = \[-\] 1 and y = \[-\] 2 on both the sides to verify the result.
\[\text { LHS } =\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
\[ = \left[ \frac{1}{3}\left( - 1 \right) - \frac{\left( - 2 \right)^2}{5} \right]\left[ \frac{1}{3}\left( - 1 \right) + \frac{\left( - 2 \right)^2}{5} \right]\]
\[ = \left( - \frac{1}{3} - \frac{4}{5} \right)\left( - \frac{1}{3} + \frac{4}{5} \right)\]
\[ = \left( \frac{- 17}{15} \right)\left( \frac{7}{15} \right)\]
\[ = \frac{- 119}{225}\]
\[\text { RHS } = \frac{1}{9} x^2 - \frac{y^4}{25}\]
\[ = \frac{1}{9} \left( - 1 \right)^2 - \frac{\left( - 2 \right)^4}{25}\]
\[ = \frac{1}{9} \times 1 - \frac{16}{25}\]
\[ = \frac{1}{9} - \frac{16}{25}\]
\[ = - \frac{119}{225}\]
Because LHS is equal to RHS, the result is verified.
Thus, the answer is \[\frac{1}{9} x^2 - \frac{y^4}{25}\].
APPEARS IN
संबंधित प्रश्न
Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5.
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Multiply:
(7x + y) by (x + 5y)
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Simplify:
(x2 − 2y2) (x + 4y) x2y2
Simplify:
a2b2(a + 2b)(3a + b)
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Simplify:
(5 − x)(6 − 5x)( 2 − x)
Multiply:
16xy × 18xy