Advertisements
Advertisements
प्रश्न
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
उत्तर
To find the product, we will use distributive law as follows:
\[250 . 5xy\left( xz + \frac{y}{10} \right)\]
\[ = 250 . 5xy \times xz + 250 . 5xy \times \frac{y}{10}\]
\[ = 250 . 5 x^{1 + 1} yz + 25 . 05x y^{1 + 1} \]
\[ = 250 . 5 x^2 yz + 25 . 05x y^2\]
Thus, the answer is \[250 . 5 x^2 yz + 25 . 05x y^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
xy(x3 − y3)
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Simplify: 2a2 + 3a(1 − 2a3) + a(a + 1)
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Multiply:
(5x + 3) by (7x + 2)
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Solve the following equation.
5(x + 1) = 74