Advertisements
Advertisements
प्रश्न
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
उत्तर
To find the product, we will use distributive law as follows:
\[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
\[ = \frac{7}{5} x^2 y \times \frac{3}{5}x y^2 + \frac{7}{5} x^2 y \times \frac{2}{5}x\]
\[ = \frac{21}{25} x^{2 + 1} y^{1 + 2} + \frac{14}{25} x^{2 + 1} y\]
\[ = \frac{21}{25} x^3 y^3 + \frac{14}{25} x^3 y\]
Thus, the answer is \[\frac{21}{25} x^3 y^3 + \frac{14}{25} x^3 y\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
5x2 × 4x3
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Find the following product:
1.5x(10x2y − 100xy2)
Multiply:
(5x + 3) by (7x + 2)
Multiply:
(7x + y) by (x + 5y)
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Simplify : (m2 − n2m)2 + 2m3n2
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2