Advertisements
Advertisements
प्रश्न
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
\[ = \left\{ \frac{7}{9} \times \frac{15}{7} \times \left( - \frac{3}{5} \right) \right\} \times \left( a \times a \times a^2 \right) \times \left( b^2 \times b \right) \times \left( c^2 \times c \right)\]
\[ = \left\{ \frac{7^1}{9_3} \times \frac{{15}^3}{7} \times \left( - \frac{3^1}{5} \right) \right\} \times \left( a \times a \times a^2 \right) \times \left( b^2 \times b \right) \times \left( c^2 \times c \right)\]
\[ = \left\{ \frac{7^1}{9_3} \times \frac{{15}^{3^1}}{7} \times \left( - \frac{3^1}{5} \right) \right\} \times \left( a^{1 + 1 + 2} \right) \times \left( b^{2 + 1} \right) \times \left( c^{2 + 1} \right)\]
\[ = - a^4 b^3 c^3\]
Thus, the answer is \[- a^4 b^3 c^3\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Find the following product:
2a3(3a + 5b)
Find the following product:
−11a(3a + 2b)
Find the following product:
1.5x(10x2y − 100xy2)
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Simplify:
(5x + 3)(x − 1)(3x − 2)
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2