Advertisements
Advertisements
प्रश्न
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
उत्तर
To simplify, we will proceed as follows:
\[ \left( 2x - 1 \right)\left( 2x + 1 \right)\left( 4 x^2 + 1 \right)\left( 16 x^4 + 1 \right)\]
\[ = \left( \left( 2x \right)^2 - 1^2 \right)\left( 4 x^2 + 1 \right)\left( 16 x^4 + 1 \right) \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right] \]
\[ = \left( 4 x^2 - 1 \right)\left( 4 x^2 + 1 \right)\left( 16 x^4 + 1 \right) \]
\[ = \left\{ \left( 4 x^2 \right)^2 - \left( 1^2 \right)^2 \right\}\left( 16 x^4 + 1 \right) \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right]\]
\[ = \left( 16 x^4 - 1 \right) \left( 16 x^4 + 1 \right) \]
\[ = \left( 16 x^4 \right)^2 - 1^2 \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right]\]
\[ = 256 x^8 - 1\]
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5xy) × (−3x2yz)
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Simplify: x2(x2 + 1) − x3(x + 1) − x(x3 − x)
Simplify:
(5x + 3)(x − 1)(3x − 2)
Multiply:
(12a + 17b) × 4c
Solve:
(3x + 2y)(7x − 8y)