Advertisements
Advertisements
Question
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
Solution
To simplify, we will proceed as follows:
\[ \left( 2x - 1 \right)\left( 2x + 1 \right)\left( 4 x^2 + 1 \right)\left( 16 x^4 + 1 \right)\]
\[ = \left( \left( 2x \right)^2 - 1^2 \right)\left( 4 x^2 + 1 \right)\left( 16 x^4 + 1 \right) \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right] \]
\[ = \left( 4 x^2 - 1 \right)\left( 4 x^2 + 1 \right)\left( 16 x^4 + 1 \right) \]
\[ = \left\{ \left( 4 x^2 \right)^2 - \left( 1^2 \right)^2 \right\}\left( 16 x^4 + 1 \right) \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right]\]
\[ = \left( 16 x^4 - 1 \right) \left( 16 x^4 + 1 \right) \]
\[ = \left( 16 x^4 \right)^2 - 1^2 \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right]\]
\[ = 256 x^8 - 1\]
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Simplify: a(b − c) − b(c − a) − c(a − b)
Simplify: a(b − c) + b(c − a) + c(a − b)
Multiply:
(0.8a − 0.5b) by (1.5a − 3b)
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
Simplify : (2.5p − 1.5q)2 − (1.5p − 2.5q)2