Advertisements
Advertisements
प्रश्न
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
उत्तर
To simplify, we will proceed as follows:
\[ \left( 2x - 1 \right)\left( 2x + 1 \right)\left( 4 x^2 + 1 \right)\left( 16 x^4 + 1 \right)\]
\[ = \left( \left( 2x \right)^2 - 1^2 \right)\left( 4 x^2 + 1 \right)\left( 16 x^4 + 1 \right) \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right] \]
\[ = \left( 4 x^2 - 1 \right)\left( 4 x^2 + 1 \right)\left( 16 x^4 + 1 \right) \]
\[ = \left\{ \left( 4 x^2 \right)^2 - \left( 1^2 \right)^2 \right\}\left( 16 x^4 + 1 \right) \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right]\]
\[ = \left( 16 x^4 - 1 \right) \left( 16 x^4 + 1 \right) \]
\[ = \left( 16 x^4 \right)^2 - 1^2 \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right]\]
\[ = 256 x^8 - 1\]
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5.
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Find the following product:
0.1y(0.1x5 + 0.1y)
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
Simplify: a(b − c) + b(c − a) + c(a − b)
Simplify: a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)
Multiply:
(0.8a − 0.5b) by (1.5a − 3b)
Multiply:
(2x2 − 1) by (4x3 + 5x2)