Advertisements
Advertisements
प्रश्न
Simplify: a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)
उत्तर
To simplify, we will use distributive law as follows:
\[a^2 b\left( a^3 - a + 1 \right) - ab\left( a^4 - 2 a^2 + 2a \right) - b\left( a^3 - a^2 - 1 \right)\]
\[ = a^5 b - a^3 b + a^2 b - a^5 b + 2 a^3 b - 2 a^2 b - a^3 b + a^2 b + b\]
\[ = a^5 b - a^5 b - a^3 b + 2 a^3 b - a^3 b + a^2 b - 2 a^2 b + a^2 b + b\]
\[ = b\]
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
xy(x3 − y3)
Find the following product:
0.1y(0.1x5 + 0.1y)
Multiply:
(x2 + y2) by (3a + 2b)
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Simplify:
x2(x − y) y2(x + 2y)
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0