Advertisements
Advertisements
प्रश्न
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( - 5a \right) \times \left( - 10 a^2 \right) \times \left( - 2 a^3 \right)\]
\[ = \left\{ \left( - 5 \right) \times \left( - 10 \right) \times \left( - 2 \right) \right\} \times \left( a \times a^2 \times a^3 \right)\]
\[ = \left\{ \left( - 5 \right) \times \left( - 10 \right) \times \left( - 2 \right) \right\} \times \left( a^{1 + 2 + 3} \right)\]
\[ = - 100 a^6 \]
Thus, the answer is \[- 100 a^6\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{4}{3} u^2 vw \right) \times \left( - 5uv w^2 \right) \times \left( \frac{1}{3} v^2 wu \right)\]
Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5.
Find the following product: \[\frac{6x}{5}( x^3 + y^3 )\]
Find the following product:
4.1xy(1.1x − y)
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)