Advertisements
Advertisements
प्रश्न
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
उत्तर
To simplify, we will proceed as follows:
\[\left( 3x - 2 \right)\left( 2x - 3 \right) + \left( 5x - 3 \right)\left( x + 1 \right)\]
\[ = \left[ \left( 3x - 2 \right)\left( 2x - 3 \right) \right] + \left[ \left( 5x - 3 \right)\left( x + 1 \right) \right]\]
\[= \left[ 3x\left( 2x - 3 \right) - 2\left( 2x - 3 \right) \right] + \left[ 5x\left( x + 1 \right) - 3\left( x + 1 \right) \right]\] (Distributive law)
\[= 6 x^2 - 9x - 4x + 6 + 5 x^2 + 5x - 3x - 3\]
\[= 6 x^2 + 5 x^2 - 9x - 4x + 5x - 3x - 3 + 6\] (Rearranging)
\[= 11 x^2 - 11x + 3\] (Combining like terms)
Thus, the answer is \[11 x^2 - 11x + 3\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)
Solve:
(3x + 2y)(7x − 8y)