Advertisements
Advertisements
प्रश्न
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)
उत्तर
To simplify,we will proceed as follows:
\[\left( x^3 - 2 x^2 + 3x - 4 \right)\left( x - 1 \right) - \left( 2x - 3 \right)\left( x^2 - x + 1 \right)\]
\[ = \left[ \left( x^3 - 2 x^2 + 3x - 4 \right)\left( x - 1 \right) \right] - \left[ \left( 2x - 3 \right)\left( x^2 - x + 1 \right) \right]\]
\[= \left[ x\left( x^3 - 2 x^2 + 3x - 4 \right) - 1\left( x^3 - 2 x^2 + 3x - 4 \right) \right] - \left[ 2x\left( x^2 - x + 1 \right) - 3\left( x^2 - x + 1 \right) \right]\] (Distributive law)
\[= \left[ x\left( x^3 - 2 x^2 + 3x - 4 \right) - 1\left( x^3 - 2 x^2 + 3x - 4 \right) \right] - \left[ 2x\left( x^2 - x + 1 \right) - 3\left( x^2 - x + 1 \right) \right]\]
\[ = x^4 - 2 x^3 + 3 x^2 - 4x - x^3 + 2 x^2 - 3x + 4 - \left[ 2 x^3 - 2 x^2 + 2x - 3 x^2 + 3x - 3 \right]\]
\[ = x^4 - 2 x^3 + 3 x^2 - 4x - x^3 + 2 x^2 - 3x + 4 - 2 x^3 + 2 x^2 - 2x + 3 x^2 - 3x + 3\]
\[= x^4 - 2 x^3 - 2 x^3 - x^3 + 3 x^2 + 2 x^2 + 2 x^2 + 3 x^2 - 4x - 3x - 2x - 3x + 4 + 3\]
(Rearranging)
\[= x^4 - 5 x^3 + 10 x^2 - 12x + 7\] (Combining like terms)
Thus, the answer is \[x^4 - 5 x^3 + 10 x^2 - 12x + 7\].
APPEARS IN
संबंधित प्रश्न
Find the following product:
−5a(7a − 2b)
Find the following product:
0.1y(0.1x5 + 0.1y)
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
Simplify: 4ab(a − b) − 6a2(b − b2) − 3b2(2a2 − a) + 2ab(b − a)
Simplify: a2(2a − 1) + 3a + a3 − 8
Multiply:
(2x + 8) by (x − 3)
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]