Advertisements
Advertisements
प्रश्न
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
उत्तर
To find the product, we will use distributive law as follows:
\[- 3y\left( xy + y^2 \right)\]
\[ = - 3y \times xy + \left( - 3y \right) \times y^2 \]
\[ = - 3x y^{1 + 1} - 3 y^{1 + 2} \]
\[ = - 3x y^2 - 3 y^3\]
Substituting x = 4 and y = 5 in the result, we get:
\[- 3x y^2 - 3 y^3 \]
\[ = - 3\left( 4 \right) \left( 5 \right)^2 - 3 \left( 5 \right)^3 \]
\[ = - 3\left( 4 \right)\left( 25 \right) - 3\left( 125 \right)\]
\[ = - 300 - 375\]
\[ = - 675\]
Thus, the product is ( \[- 3x y^2 - 3 y^3\]), and its value for x = 4 and y = 5 is ( \[-\] 675).
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Find the following product:
4.1xy(1.1x − y)
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
Simplify: a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)
Multiply:
(7x + y) by (x + 5y)
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Simplify:
(5 − x)(6 − 5x)( 2 − x)
Simplify : (2.5p − 1.5q)2 − (1.5p − 2.5q)2