Advertisements
Advertisements
प्रश्न
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
उत्तर
To find the product, we will use distributive law as follows:
\[- \frac{3}{2} x^2 y^3 \times \left( 2x - y \right)\]
\[ = \left( - \frac{3}{2} x^2 y^3 \times 2x \right) - \left( - \frac{3}{2} x^2 y^3 \times y \right)\]
\[ = \left( - 3 x^{2 + 1} y^3 \right) - \left( - \frac{3}{2} x^2 y^{3 + 1} \right)\]
\[ = - 3 x^3 y^3 + \frac{3}{2} x^2 y^4\]
Substituting x = 1 and y = 2 in the result, we get:
\[- 3 x^3 y^3 + \frac{3}{2} x^2 y^4 \]
\[ = - 3 \left( 1 \right)^3 \left( 2 \right)^3 + \frac{3}{2} \left( 1 \right)^2 \left( 2 \right)^4 \]
\[ = - 3 \times 1 \times 8 + \frac{3}{2} \times 1 \times 16\]
\[ = - 24 + 24\]
\[ = 0\]
Thus, the product is \[- 3 x^3 y^3 + \frac{3}{2} x^2 y^4\],and its value for x = 1 and y = 2 is 0.
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(x2)3 × (2x) × (−4x) × (5)
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Simplify: 2a2 + 3a(1 − 2a3) + a(a + 1)
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Simplify:
x2(x + 2y) (x − 3y)
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
Show that: (3x + 7)2 − 84x = (3x − 7)2