Advertisements
Advertisements
प्रश्न
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
उत्तर
To find the product, we will use distributive law as follows:
\[- \frac{3}{2} x^2 y^3 \times \left( 2x - y \right)\]
\[ = \left( - \frac{3}{2} x^2 y^3 \times 2x \right) - \left( - \frac{3}{2} x^2 y^3 \times y \right)\]
\[ = \left( - 3 x^{2 + 1} y^3 \right) - \left( - \frac{3}{2} x^2 y^{3 + 1} \right)\]
\[ = - 3 x^3 y^3 + \frac{3}{2} x^2 y^4\]
Substituting x = 1 and y = 2 in the result, we get:
\[- 3 x^3 y^3 + \frac{3}{2} x^2 y^4 \]
\[ = - 3 \left( 1 \right)^3 \left( 2 \right)^3 + \frac{3}{2} \left( 1 \right)^2 \left( 2 \right)^4 \]
\[ = - 3 \times 1 \times 8 + \frac{3}{2} \times 1 \times 16\]
\[ = - 24 + 24\]
\[ = 0\]
Thus, the product is \[- 3 x^3 y^3 + \frac{3}{2} x^2 y^4\],and its value for x = 1 and y = 2 is 0.
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5.
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Simplify:
a2b2(a + 2b)(3a + b)
Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2