Advertisements
Advertisements
प्रश्न
Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)
उत्तर
To simplify, we will proceed as follows:
\[\left( 3x + 2y \right)\left( 4x + 3y \right) - \left( 2x - y \right)\left( 7x - 3y \right)\]
\[ = \left[ \left( 3x + 2y \right)\left( 4x + 3y \right) \right] - \left[ \left( 2x - y \right)\left( 7x - 3y \right) \right]\]
\[= \left[ 3x\left( 4x + 3y \right) + 2y\left( 4x + 3y \right) \right] - \left[ 2x\left( 7x - 3y \right) - y\left( 7x - 3y \right) \right]\] (Distributive law)
\[= 12 x^2 + 9xy + 8xy + 6 y^2 - \left[ 14 x^2 - 6xy - 7xy + 3 y^2 \right]\]
\[ = 12 x^2 + 9xy + 8xy + 6 y^2 - 14 x^2 + 6xy + 7xy - 3 y^2\]
\[= 12 x^2 - 14 x^2 + 9xy + 8xy + 6xy + 7xy + 6 y^2 - 3 y^2\] (Rearranging)
\[= - 2 x^2 + 30xy + 3 y^2\] (Combining like terms)
Thus, the answer is \[- 2 x^2 + 30xy + 3 y^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
Simplify: a(b − c) − b(c − a) − c(a − b)
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Solve the following equation.
5(x + 1) = 74