Advertisements
Advertisements
प्रश्न
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
उत्तर
To multiply, we will use distributive law as follows:
\[\left( 3x - 5y \right)\left( x + y \right)\]
\[ = 3x\left( x + y \right) - 5y\left( x + y \right)\]
\[ = 3 x^2 + 3xy - 5xy - 5 y^2 \]
\[ = 3 x^2 - 2xy - 5 y^2\]
\[\therefore\] \[\left( 3x - 5y \right)\left( x + y \right) = 3 x^2 - 2xy - 5 y^2\].
Now, we put x = \[-\] 1 and y = \[-\] 2 on both sides to verify the result.
\[\text { LHS } = \left( 3x - 5y \right)\left( x + y \right)\]
\[ = \left\{ 3\left( - 1 \right) - 5\left( - 2 \right) \right\}\left\{ - 1 + \left( - 2 \right) \right\}\]
\[ = \left( - 3 + 10 \right)\left( - 3 \right)\]
\[ = \left( 7 \right)\left( - 3 \right)\]
\[ = - 21\]
\[\text { RHS } = 3 x^2 - 2xy - 5 y^2 \]
\[ = 3 \left( - 1 \right)^2 - 2\left( - 1 \right)\left( - 2 \right) - 5 \left( - 2 \right)^2 \]
\[ = 3 \times 1 - 4 - 5 \times 4\]
\[ = 3 - 4 - 20\]
\[ = - 21\]
Because LHS is equal to RHS, the result is verified.
Thus, the answer is \[3 x^2 - 2xy - 5 y^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Find the following product:
−11a(3a + 2b)
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Show that: (3x + 7)2 − 84x = (3x − 7)2
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2
Multiply:
(4x + 5y) × (9x + 7y)