हिंदी

Multiply: ( − a 7 + a 2 9 ) B Y ( B 2 − B 2 3 ) . - Mathematics

Advertisements
Advertisements

प्रश्न

Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].

संक्षेप में उत्तर

उत्तर

To multiply, we will use distributive law as follows:

\[\left( - \frac{a}{7} + \frac{a^2}{9} \right)\left( \frac{b}{2} - \frac{b^2}{3} \right)\]

\[ = \left( - \frac{a}{7} \right)\left( \frac{b}{2} - \frac{b^2}{3} \right) + \left( \frac{a^2}{9} \right)\left( \frac{b}{2} - \frac{b^2}{3} \right)\]

\[ = \left( - \frac{ab}{14} + \frac{a b^2}{21} \right) + \left( \frac{a^2 b}{18} - \frac{a^2 b^2}{27} \right)\]

\[ = - \frac{ab}{14} + \frac{a b^2}{21} + \frac{a^2 b}{18} - \frac{a^2 b^2}{27}\]

Thus, the answer is \[- \frac{ab}{14} + \frac{a b^2}{21} + \frac{a^2 b}{18} - \frac{a^2 b^2}{27}\].

shaalaa.com
Multiplication of Algebraic Expressions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Algebraic Expressions and Identities - Exercise 6.5 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 8
अध्याय 6 Algebraic Expressions and Identities
Exercise 6.5 | Q 13 | पृष्ठ ३१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×