Advertisements
Advertisements
प्रश्न
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
उत्तर
To multiply, we will use distributive law as follows:
\[\left( - \frac{a}{7} + \frac{a^2}{9} \right)\left( \frac{b}{2} - \frac{b^2}{3} \right)\]
\[ = \left( - \frac{a}{7} \right)\left( \frac{b}{2} - \frac{b^2}{3} \right) + \left( \frac{a^2}{9} \right)\left( \frac{b}{2} - \frac{b^2}{3} \right)\]
\[ = \left( - \frac{ab}{14} + \frac{a b^2}{21} \right) + \left( \frac{a^2 b}{18} - \frac{a^2 b^2}{27} \right)\]
\[ = - \frac{ab}{14} + \frac{a b^2}{21} + \frac{a^2 b}{18} - \frac{a^2 b^2}{27}\]
Thus, the answer is \[- \frac{ab}{14} + \frac{a b^2}{21} + \frac{a^2 b}{18} - \frac{a^2 b^2}{27}\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Find the following product:
2a3(3a + 5b)
xy(x3 − y3)
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
Simplify: 4ab(a − b) − 6a2(b − b2) − 3b2(2a2 − a) + 2ab(b − a)
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
Multiply:
23xy2 × 4yz2
Multiply:
(4x + 5y) × (9x + 7y)