Advertisements
Advertisements
प्रश्न
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
उत्तर
To multiply, we will use distributive law as follows:
\[\left( - \frac{a}{7} + \frac{a^2}{9} \right)\left( \frac{b}{2} - \frac{b^2}{3} \right)\]
\[ = \left( - \frac{a}{7} \right)\left( \frac{b}{2} - \frac{b^2}{3} \right) + \left( \frac{a^2}{9} \right)\left( \frac{b}{2} - \frac{b^2}{3} \right)\]
\[ = \left( - \frac{ab}{14} + \frac{a b^2}{21} \right) + \left( \frac{a^2 b}{18} - \frac{a^2 b^2}{27} \right)\]
\[ = - \frac{ab}{14} + \frac{a b^2}{21} + \frac{a^2 b}{18} - \frac{a^2 b^2}{27}\]
Thus, the answer is \[- \frac{ab}{14} + \frac{a b^2}{21} + \frac{a^2 b}{18} - \frac{a^2 b^2}{27}\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5xy) × (−3x2yz)
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Simplify: a(b − c) − b(c − a) − c(a − b)
Simplify: a2(2a − 1) + 3a + a3 − 8
(2xy + 3y2) (3y2 − 2)
Simplify:
x2(x + 2y) (x − 3y)
Simplify:
a2b2(a + 2b)(3a + b)
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)