Advertisements
Advertisements
प्रश्न
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the the law of indices, that is, \[a^m \times a^n = a^{m + n}\].
We have:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2 \]
\[ = \left( \frac{1}{4} \times \frac{2}{3} \right) \times \left( x \times x^2 \right) \times \left( y \times y \right) \times z^2 \]
\[ = \left( \frac{1}{4} \times \frac{2}{3} \right) \times \left( x^{1 + 2} \right) \times \left( y^{1 + 1} \right) \times z^2 \]
\[ = \frac{1}{6} x^3 y^2 z^2\]
Thus, the answer is \[\frac{1}{6} x^3 y^2 z^2\].
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
Multiply:
(7x + y) by (x + 5y)
Multiply:
(a − 1) by (0.1a2 + 3)
Multiply:
(x6 − y6) by (x2 + y2)
Multiply:
(0.8a − 0.5b) by (1.5a − 3b)
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
Solve the following equation.
5(x + 1) = 74