Advertisements
Advertisements
प्रश्न
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
उत्तर
To find the product, we will use the distributive law in the following way:
\[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
\[ = \left\{ \left( - \frac{8}{27}xyz \right)\left( \frac{3}{2}xy z^2 \right) \right\} - \left\{ \left( - \frac{8}{27}xyz \right)\left( \frac{9}{4}x y^2 z^3 \right) \right\}\]
\[ = \left\{ \left( - \frac{8}{27} \times \frac{3}{2} \right)\left( x \times x \right) \times \left( y \times y \right) \times \left( z \times z^2 \right) \right\} - \left\{ \left( - \frac{8}{27} \times \frac{9}{4} \right)\left( x \times x \right) \times \left( y \times y^2 \right) \times \left( z \times z^3 \right) \right\}\]
\[ = \left\{ \left( - \frac{8}{27} \times \frac{3}{2} \right)\left( x^{1 + 1} y^{1 + 1} z^{1 + 2} \right) \right\} - \left\{ \left( - \frac{8}{27} \times \frac{9}{4} \right)\left( x^{1 + 1} y^{1 + 2} z^{1 + 3} \right) \right\}\]
\[ = \left\{ \left( - \frac{8^4}{{27}_9} \times \frac{3}{2} \right)\left( x^{1 + 1} y^{1 + 1} z^{1 + 2} \right) \right\} - \left\{ \left( - \frac{8^2}{{27}_3} \times \frac{9}{4} \right)\left( x^{1 + 1} y^{1 + 2} z^{1 + 3} \right) \right\}\]
\[ = - \frac{4}{9} x^2 y^2 z^3 + \frac{2}{3} x^2 y^3 z^4\]
Thus, the answer is \[- \frac{4}{9} x^2 y^2 z^3 + \frac{2}{3} x^2 y^3 z^4\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
xy(x3 − y3)
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Find the following product:
1.5x(10x2y − 100xy2)
Simplify: x2(x2 + 1) − x3(x + 1) − x(x3 − x)
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Solve the following equation.
6x − 1 = 3x + 8