Advertisements
Advertisements
प्रश्न
Find the following product:
1.5x(10x2y − 100xy2)
उत्तर
To find the product, we will use distributive law as follows:
\[1 . 5x\left( 10 x^2 y - 100x y^2 \right)\]
\[ = \left( 1 . 5x \times 10 x^2 y \right) - \left( 1 . 5x \times 100x y^2 \right)\]
\[ = \left( 15 x^{1 + 2} y \right) - \left( 150 x^{1 + 1} y^2 \right)\]
\[ = 15 x^3 y - 150 x^2 y^2\]
Thus, the answer is \[15 x^3 y - 150 x^2 y^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Find the following product:
−11y2(3y + 7)
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
Simplify: 4ab(a − b) − 6a2(b − b2) − 3b2(2a2 − a) + 2ab(b − a)
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)