Advertisements
Advertisements
प्रश्न
Find the following product:
−11y2(3y + 7)
उत्तर
To find the product, we will use distributive law as follows:
\[- 11 y^2 \left( 3y + 7 \right)\]
\[ = \left( - 11 y^2 \right) \times 3y + \left( - 11 y^2 \right) \times 7\]
\[ = \left( - 11 \times 3 \right)\left( y^2 \times y \right) + \left( - 11 \times 7 \right) \times \left( y^2 \right)\]
\[ = \left( - 33 \right)\left( y^{2 + 1} \right) + \left( - 77 \right) \times \left( y^2 \right)\]
\[ = - 33 y^3 - 77 y^2\]
Thus, the answer is \[- 33 y^3 - 77 y^2\] .
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Simplify: x2(x2 + 1) − x3(x + 1) − x(x3 − x)
Multiply:
(2x + 8) by (x − 3)
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Multiply:
(x2 + y2) by (3a + 2b)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0