Advertisements
Advertisements
प्रश्न
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0
उत्तर
\[\text { LHS } = \left( a - b \right)\left( a + b \right) + \left( b - c \right)\left( b + c \right) + \left( c + a \right)\left( c - a \right)\]
\[ = a^2 - b^2 + b^2 - c^2 + c^2 - a^2 \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right]\]
\[ = a^2 - b^2 + b^2 - c^2 + c^2 - a^2 \]
\[ = 0\]
= RHS
Because LHS is equal to RHS, the given equation is verified.
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5xy) × (−3x2yz)
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
Simplify: 2a2 + 3a(1 − 2a3) + a(a + 1)
Multiply:
(a − 1) by (0.1a2 + 3)
Simplify:
(5 − x)(6 − 5x)( 2 − x)
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)
Solve the following equation.
5(x + 1) = 74