Advertisements
Advertisements
Question
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0
Solution
\[\text { LHS } = \left( a - b \right)\left( a + b \right) + \left( b - c \right)\left( b + c \right) + \left( c + a \right)\left( c - a \right)\]
\[ = a^2 - b^2 + b^2 - c^2 + c^2 - a^2 \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right]\]
\[ = a^2 - b^2 + b^2 - c^2 + c^2 - a^2 \]
\[ = 0\]
= RHS
Because LHS is equal to RHS, the given equation is verified.
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)
xy(x3 − y3)
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Simplify:
a2b2(a + 2b)(3a + b)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
Multiply:
16xy × 18xy