Advertisements
Advertisements
प्रश्न
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0
उत्तर
\[\text { LHS } = \left( a - b \right)\left( a + b \right) + \left( b - c \right)\left( b + c \right) + \left( c + a \right)\left( c - a \right)\]
\[ = a^2 - b^2 + b^2 - c^2 + c^2 - a^2 \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right]\]
\[ = a^2 - b^2 + b^2 - c^2 + c^2 - a^2 \]
\[ = 0\]
= RHS
Because LHS is equal to RHS, the given equation is verified.
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Find the following product:
4.1xy(1.1x − y)
Simplify: a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Simplify : (m2 − n2m)2 + 2m3n2
Solve the following equation.
5(x + 1) = 74