Advertisements
Advertisements
प्रश्न
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
\[ = \left\{ \left( - \frac{2}{7} \right) \times \left( - \frac{3}{4} \right) \times \left( - \frac{14}{5} \right) \right\} \times \left( a^4 \times a^2 \right) \times \left( b \times b^2 \right)\]
\[ = \left\{ - \left( \frac{2}{7} \times \frac{3}{4} \times \frac{14}{5} \right) \right\} \times a^{4 + 2} \times b^{1 + 2} \]
\[ = \left\{ - \left( \frac{2}{7} \times \frac{3}{4_2} \times \frac{{14}^{2^1}}{5} \right) \right\} \times a^6 \times b^3 \]
\[ = - \frac{3}{5} a^6 b^3\]
Thus, the answer is \[- \frac{3}{5} a^6 b^3\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5xy) × (−3x2yz)
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Find the following product:
1.5x(10x2y − 100xy2)
Simplify: a2(2a − 1) + 3a + a3 − 8
Simplify: a2b(a − b2) + ab2(4ab − 2a2) − a3b(1 − 2b)
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]