Advertisements
Advertisements
Question
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
\[ = \left\{ \left( - \frac{2}{7} \right) \times \left( - \frac{3}{4} \right) \times \left( - \frac{14}{5} \right) \right\} \times \left( a^4 \times a^2 \right) \times \left( b \times b^2 \right)\]
\[ = \left\{ - \left( \frac{2}{7} \times \frac{3}{4} \times \frac{14}{5} \right) \right\} \times a^{4 + 2} \times b^{1 + 2} \]
\[ = \left\{ - \left( \frac{2}{7} \times \frac{3}{4_2} \times \frac{{14}^{2^1}}{5} \right) \right\} \times a^6 \times b^3 \]
\[ = - \frac{3}{5} a^6 b^3\]
Thus, the answer is \[- \frac{3}{5} a^6 b^3\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product: \[\left( \frac{4}{3} u^2 vw \right) \times \left( - 5uv w^2 \right) \times \left( \frac{1}{3} v^2 wu \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
xy(x3 − y3)
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
Find the following product:
4.1xy(1.1x − y)
Simplify: a(b − c) + b(c − a) + c(a − b)
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Simplify:
(5 − x)(6 − 5x)( 2 − x)
Multiply:
(12a + 17b) × 4c
Solve the following equation.
5(x + 1) = 74