Advertisements
Advertisements
Question
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
\[ = \left\{ \frac{7}{9} \times \frac{15}{7} \times \left( - \frac{3}{5} \right) \right\} \times \left( a \times a \times a^2 \right) \times \left( b^2 \times b \right) \times \left( c^2 \times c \right)\]
\[ = \left\{ \frac{7^1}{9_3} \times \frac{{15}^3}{7} \times \left( - \frac{3^1}{5} \right) \right\} \times \left( a \times a \times a^2 \right) \times \left( b^2 \times b \right) \times \left( c^2 \times c \right)\]
\[ = \left\{ \frac{7^1}{9_3} \times \frac{{15}^{3^1}}{7} \times \left( - \frac{3^1}{5} \right) \right\} \times \left( a^{1 + 1 + 2} \right) \times \left( b^{2 + 1} \right) \times \left( c^{2 + 1} \right)\]
\[ = - a^4 b^3 c^3\]
Thus, the answer is \[- a^4 b^3 c^3\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
Simplify: 4ab(a − b) − 6a2(b − b2) − 3b2(2a2 − a) + 2ab(b − a)
Multiply:
(5x + 3) by (7x + 2)
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Multiply:
16xy × 18xy