Advertisements
Advertisements
प्रश्न
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
\[ = \left\{ \frac{7}{9} \times \frac{15}{7} \times \left( - \frac{3}{5} \right) \right\} \times \left( a \times a \times a^2 \right) \times \left( b^2 \times b \right) \times \left( c^2 \times c \right)\]
\[ = \left\{ \frac{7^1}{9_3} \times \frac{{15}^3}{7} \times \left( - \frac{3^1}{5} \right) \right\} \times \left( a \times a \times a^2 \right) \times \left( b^2 \times b \right) \times \left( c^2 \times c \right)\]
\[ = \left\{ \frac{7^1}{9_3} \times \frac{{15}^{3^1}}{7} \times \left( - \frac{3^1}{5} \right) \right\} \times \left( a^{1 + 1 + 2} \right) \times \left( b^{2 + 1} \right) \times \left( c^{2 + 1} \right)\]
\[ = - a^4 b^3 c^3\]
Thus, the answer is \[- a^4 b^3 c^3\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
Find the following product:
1.5x(10x2y − 100xy2)
Simplify: x2(x2 + 1) − x3(x + 1) − x(x3 − x)
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Multiply:
(a − 1) by (0.1a2 + 3)
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Simplify : (m2 − n2m)2 + 2m3n2
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0
Solve:
(3x + 2y)(7x − 8y)