Advertisements
Advertisements
प्रश्न
Simplify : (m2 − n2m)2 + 2m3n2
उत्तर
To simplify, we will proceed as follows:
\[ \left( m^2 - n^2 m \right)^2 + 2 m^3 n^2 \]
\[ = \left( m^2 \right)^2 + \left( n^2 m \right)^2 \left[ \because \left( a - b \right)^2 + 2ab = a^2 + b^2 \right]\]
\[ = m^4 + n^4 m^2 \]
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Simplify: a(b − c) + b(c − a) + c(a − b)
Simplify: a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)
Multiply:
(a − 1) by (0.1a2 + 3)
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0